QSON: New Java JSON parser for Quarkus

10 Comments

Quarkus has a new JSON parser and object mapper called QSON. It does bytecode generation for the Java classes you want to map to and from JSON around a small core library. I’m not going to get into details on how to use it, just visit the github page for more information.

I started this project because I noticed a huge startup time for Jackson as relative to the other components within Quarkus applications. IIRC it was taking about 20% of the boot time for a simple JAX-RS microservice. So the initial prototype was to see how much I could improve boot time and I was pleasantly surprised that the parser I implemented was a bit better than Jackson at runtime too!

The end result was that boot time improved about 20% for a simple Quarkus JAX-RS microservice. The runtime performance is also better in most instances too. Here are the numbers from a JMH benchmark I did:

Benchmark                           Mode  Cnt       Score   Error  Units
MyBenchmark.testParserAfterburner  thrpt    2  223630.276          ops/s
MyBenchmark.testParserJackson      thrpt    2  218748.065          ops/s
MyBenchmark.testParserQson         thrpt    2  251086.874          ops/s
MyBenchmark.testWriterAfterburner  thrpt    2  189243.175          ops/s
MyBenchmark.testWriterJackson      thrpt    2  168637.541          ops/s
MyBenchmark.testWriterQson         thrpt    2  177855.879          ops/s

These are runtime throughput numbers so the higher the better. Qson is better than regular Jackson and Jackson+Afterburner for json to object mapping (reading/parsing). For output, Qson is better than regular Jackson, but is a little behind Afterburner.

There’s still some work to do for Qson. One of the big things I need is a maven and gradle plugin to handle bytecode generation so that Qson can be used outside of Quarkus. We’ll also be adding more features to Qson like custom mappings. One thing to note though is that I won’t add features that hurt performance, increase memory footprint, or hurt boot time.

Over time, we’ll be integrating Qson as an option for any Quarkus extension that needs Json object mapping. So far, I’ve done integration with JAX-RS (Resteasy). Funqy is a prime candidate next.

Quarkus Funqy: Portable Function API

Leave a comment

Quarkus Funqy is a new FaaS API that is portable across cloud runtimes like AWS Lambda, Azure Functions, Knative Events, and Google Cloud Functions. Or, if you’re deploying to a traditional environment, Funqy functions can work standalone as well.

public class MyClass {
   @Funq
   public Greeting greet(String name) {
     ...
   }
}

The idea of Funqy is simple. You write one Java method that has one optional input parameter and that returns optional output. Either primitives or POJOs are supported as input and output types. Under the covers, Funqy integrates with whatever plumbing is needed depending on your deployment environment. Funqy classes are Quarkus components and can accept injections using Spring DI or CDI annotations (through Arc).

Funqy Bindings

Funqy can be deployed in a number of environments.

Motivations for Funqy

Why did we create Funqy? Part of our Quarkus Serverless Strategy was to make popular REST frameworks available for use in environments like AWS Lambda. When the Quarkus team was asked to integrate with Cloud Events, we felt like traditional REST frameworks didn’t quite fit even though Cloud Events has an HTTP binding. Funqy gave us an opportunity to not only unify under one API for FaaS development, but to greatly simplify the development API and to create a framework that was written for and optimized for the Quarkus platform.

REST vs Funqy

The author of this blog loves JAX-RS, was the founder of Resteasy, and even wrote a book on JAX-RS. REST is still the preferred architecture and REST over HTTP is still an ubiquitous way of writing service APIs. The thing is though, if you go out into the wild you’ll find that many application developers don’t follow REST principles. HTTP and REST frameworks are pretty much used as an RPC mechanism. Cool features in HTTP like cache-control and content negotiation are rarely used and JSON is the de facto representation exchanged between client and server.

If all this is true, you don’t need 80% of the features that a spec like JAX-RS provides. Nor do you want the overhead of supporting those unused features in your runtime. Since Funqy is a small, tightly constrained API, all the overhead of supporting unused REST features are ripped out. If you look at the implementation, its a very thin integration layer over the ridiculously fast Vert.x Web runtime. Each Funqy binding is a handful of classes. Funqy’s overhead is purely marshalling.

Who knows what the future holds for Funqy. It’s part of a quest to reduce the complexity and overhead of Java development as well as provide something that is portable to many environments so that you aren’t locked into a specific cloud vendor API. Enjoy everybody!

Quarkus Serverless Strategy

Leave a comment

What is Serverless?

Serverless architectures allow us to scale our services from zero instances to many based on request and event traffic.  The advantages are clear.  If our services are idle most of the day, why should we have to pay a cloud provider for a full day or waste scarce resources in our company’s private cloud?  Why should we have to plan for peak load when our architecture can scale up for this peak load automatically based on volume of incoming traffic?  Serverless solves these types of problems.

Function as a Service (FaaS) is also part of the Serverless paradigm and focuses on exposing one remote function per deployment.  It is a more fine grain approach than Microservices, with the idea being that you can be more agile at getting functionality to market with even smaller deployment.  AWS Lambda and Azure Functions are an example of FaaS implementations.   FaaS frameworks like AWS Lambda and Azure Functions not only bring autoscaling to your services, but they’ve started to make it much easier to deploy your code to the cloud.  In a Lambda or Azure environment, developers don’t worry about the container anymore and can just focus on pushing their code.  FaaS environments have started to take the “Ops” out of “DevOps”.

Java’s Disadvantages

Unless you’re focusing solely on batch processing, one of the disadvantages of a Serverless architecture is the instance spin up time.  In other words, the cold-start latency.  If you need milliseconds to response to a client request, and your service spinup is measured in seconds, then you have a problem.

Java frameworks like Spring, Hibernate, Microprofile, Java EE and other technologies traditionally have been slow to boot and even microservices written in these technologies take seconds to start up.  This is because most of these frameworks do all their configration and metadata processing at boot time.  Spring and Hibernate scan classes for annotations.  Hibernate additionally builds SQL queries.  They do the same exact pre-processing every single time they are spun up.

Java also has a huge memory problem.  If FaaS is the way to go and you’re having many more fine grain deployments, then Java based deployments are going to take up a huge amount of memory.  Some cloud environments also charge based on the memory used compounding the issue.

Quarkus Perfect Match for Serverless

Quarkus’s core values are to drastically reduce memory footprint and boot time for Java based applications and services.  There are two of the biggest concerns when dealing with Serverless architectures.  Quarkus has moved most of the pre-processing that frameworks like Spring and Hibernate do from boot time to build time.  This approach has drastically reduced service spin up and memory footprint.  Quarkus has also smoothed out the rough edges with Graal so that you can compile your Java microservices into native executables which provide even faster boot time and a lesser memory footprint than running with the JVM.

Quarkus Serverless Strategy

The Quarkus team is tackling Serverless in a variety of ways:

  • Enhance existing Serverless Java stacks out of the box
  • Bring the Java ecosystem to existing Serverless Java stacks
  • Provide portability between Serverless stacks through traditional, mature, existing Java APIs
  • Provide a new Java function API (Funqy) that is portable across Serverless providers

Quarkus Enhances Lambda

By modifying your pom and adding a few Quarkus AWS Lambda integration dependencies like the Quarkus maven plugin, you can compile your AWS Lambda Java projects into a native binary that the AWS Lambda Custom Runtime can consume.  Watch your cold-start latency and memory footprint drop dramatically.  Try it out yourself.

The idea here is to bring Graal support to AWS Lambda through Quarkus in a seemless way.  We have smoothed out the rough edges Graal introduces for a variety of AWS SDKs.

Pull in Java Ecosystem

Another part of the Quarkus Serverless strategy is to pull in the Java ecosystem into existing Serverless stacks.  Through Quarkus your AWS Lambda classes can inject service components via Spring DI or CDI.  You’re not stuck with using whatever AWS SDK provides and can use the mature Java frameworks you’ve been using for years.

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import org.springframework.beans.factory.annotation.Autowired;

public class GreetingLambda implements RequestHandler<String, String> {

    @Autowired
    GreetingService service;

    @Override
    public String handleRequest(String name, Context context) {
        return service.greeting(name);
    }
}

Avoid Vendor Lock-in

Let’s face it.  If you use AWS, Azure, or any other cloud provider SDKs, then you are locked into that platform.  If AWS jacks up their prices down the road, you’re going to have a tough time moving off their platform.  Quarkus helps alleviate this issue by providing integration between REST and HTTP frameworks like JAX-RS, Spring MVC, Servlet, and Vertx.Web with AWS Lambda and Azure Functions.  Let REST and HTTP be your portable architecture between cloud providers and avoid vendor lock-in by using REST frameworks that you’ve been using for years.  Try it out with AWS Lambda or Azure Functions.

One great thing about using our JAX-RS or Spring MVC support with AWS Lambda or Azure Functions is that you’re not stuck with one REST endpoint per deployment.  You can deploy existing microservices as one Lambda deployment if you desire.  This alleviates some of the management issues that an explosion of function deployments might create down the road as you can aggregate as many endpoints as you want into one Lambda deployment.

Funqy Cross Platform Functions

The final piece of our Quarkus Serverless Strategy is a new cross-platform function API called Funqy.  Quarkus Funqy is a simple API that allows you to write functions that are usable in a variety of FaaS environment:  AWS Lambda, Azure Functions, Knative Events, and more.

public class MyClass {
   @Funq
   public MyOutput myFunction(MyInput input) {
     ...
   }
}

Funqy is still in development.  We’ll have a follow up blog as soon as it is ready to release.

More to come

Quarkus will continue to revise and expand our Serverless Strategy.  Come try out our integrations and new APIs.

Quarkus unifies reactive and imperative for REST

Leave a comment

The latest release of Quarkus has unified Vert.x Web, Servlet (Undertow), and JAX-RS (Resteasy) under one I/O abstraction.  Specifically, Servlet and JAX-RS were written on top of Vert.x.

What this means for you is that if you are using Vert.x, Servlet, and/or JAX-RS in one application they will all share the same io and worker thread pools.  Scarce resources are now reused.  Because everything is unified under Vert.x, there’s a lot of future optimizations and features that we can bring to Resteasy and the JAX-RS coding model.  More info on this coming soon!

 

%d bloggers like this: